Package: pimeta 1.1.4
pimeta: Prediction Intervals for Random-Effects Meta-Analysis
An implementation of prediction intervals for random-effects meta-analysis: Higgins et al. (2009) <doi:10.1111/j.1467-985X.2008.00552.x>, Partlett and Riley (2017) <doi:10.1002/sim.7140>, and Nagashima et al. (2019) <doi:10.1177/0962280218773520>, <arxiv:1804.01054>.
Authors:
pimeta_1.1.4.tar.gz
pimeta_1.1.4.zip(r-4.5)pimeta_1.1.4.zip(r-4.4)pimeta_1.1.4.zip(r-4.3)
pimeta_1.1.4.tgz(r-4.4-x86_64)pimeta_1.1.4.tgz(r-4.4-arm64)pimeta_1.1.4.tgz(r-4.3-x86_64)pimeta_1.1.4.tgz(r-4.3-arm64)
pimeta_1.1.4.tar.gz(r-4.5-noble)pimeta_1.1.4.tar.gz(r-4.4-noble)
pimeta_1.1.4.tgz(r-4.4-emscripten)pimeta_1.1.4.tgz(r-4.3-emscripten)
pimeta.pdf |pimeta.html✨
pimeta/json (API)
NEWS
# Install 'pimeta' in R: |
install.packages('pimeta', repos = c('https://nshi-stat.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/nshi-stat/pimeta/issues
Last updated 5 years agofrom:32d743690a. Checks:OK: 1 WARNING: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 07 2024 |
R-4.5-win-x86_64 | WARNING | Nov 07 2024 |
R-4.5-linux-x86_64 | WARNING | Nov 07 2024 |
R-4.4-win-x86_64 | WARNING | Nov 07 2024 |
R-4.4-mac-x86_64 | WARNING | Nov 07 2024 |
R-4.4-mac-aarch64 | WARNING | Nov 07 2024 |
R-4.3-win-x86_64 | WARNING | Nov 07 2024 |
R-4.3-mac-x86_64 | WARNING | Nov 07 2024 |
R-4.3-mac-aarch64 | WARNING | Nov 07 2024 |
Exports:bootPIcimaconvert_binconvert_meanhtsdlhtsremli2hpimapima_bootpima_htspima_htsremlpwchisqtau2h
Dependencies:clicolorspacefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerRcppRcppEigenrlangscalestibbleutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Prediction Intervals for Random-Effects Meta-Analysis | pimeta-package |
Calculating Confidence Intervals | cima |
Rubinstein et al. (2019)'s chronic low back pain data | clbp |
Converting binary data | convert_bin |
Converting means and standard deviations | convert_mean |
Funnel Plot | funnel |
Hypertension data | hyp |
I^2 heterogeneity measure | i2h |
Koutoukidis et al. (2019)'s nonalcoholic fatty liver disease data | nfld |
Pain data | pain |
Calculating Prediction Intervals | bootPI htsdl htsreml pima pima_boot pima_hts pima_htsreml |
Plot Results | plot.cima |
Plot Results | plot.pima |
Print Results | print.cima |
Print Results | print.pima |
Print Results | print.pima_tau2h |
The Distribution of a Positive Linear Combination of Chiqaure Random Variables | pwchisq |
Systolic blood pressure (SBP) data | sbp |
Set-shifting data | setshift |
Calculating Heterogeneity Variance | tau2h |